Phytoplankton pigments (e.g., chlorophyll-a) absorb solar radiation in the upper ocean and induce a pronounced radiant heating effect (chlorophyll effect) on the climate. However, the ocean chlorophyll-induced heating effect on the mean climate state in the tropical Pacific has not been understood well. Here, a hybrid coupled model (HCM) of the atmosphere, ocean physics and biogeochemistry is used to investigate the chlorophyll effect on sea surface temperature (SST) in the eastern equatorial Pacific; a tunable coefficient, α, is introduced to represent the coupling intensity between the atmosphere and ocean in the HCM. The modeling results show that the chlorophyll effect on the mean-state SST is sensitively dependent on α (the coupling intensity). At weakly represented coupling intensity (0 ≤ α < 1.01), the chlorophyll effect tends to induce an SST cooling in the eastern equatorial Pacific, whereas an SST warming emerges at the strongly represented coupling intensity (α ≥ 1.01). Thus, a threshold exists for the coupling intensity (about α = 1.01) at which the sign of SST responses can change. Mechanisms and processes are illustrated to understand the different SST responses. In the weak coupling cases, indirect dynamical cooling processes (the adjustment of ocean circulation, enhanced vertical mixing, and upwelling) tend to dominate the SST cooling. In the strong coupling cases, the persistent warming induced by chlorophyll in the southern subtropical Pacific tends to induce cross-equatorial northerly winds, which shifts to anomalous westerly winds in the eastern equatorial Pacific, consequently reducing the evaporative cooling and weakening indirect dynamical cooling; eventually, SST warming maintains in the eastern equatorial Pacific. These results provide new insights into the biogeochemical feedback on the climate and bio-physical interactions in the tropical Pacific.
Read full abstract