Intended nationally determined contributions (INDCs) are a new strategy for mitigating climate change. Many international organizations and scholars have assessed the possibility of holding the increase in global average temperature to well below 2°C based on INDCs. Although the conclusions of these assessments are consistent, there are still large differences among the assessment results. For example, the global greenhouse gas emissions in 2030 estimated by INDCs are between 47.1–66.5 GtCO2 eq, and the temperature increase at the end of the 21st century estimated by INDCs is between 2.4–4.0°C; the inconsistency represented by these ranges is not conducive to an accurate assessment of the contributions of the current INDCs to global warming mitigation or to the further development of emissions reduction programs. By summarizing the existing studies, we found that the main reasons for the differences in estimates of global greenhouse gas emissions in 2030 made using INDCs are as follows: (1) The studies interpreted INDCs differently, which is attributable to three reasons: The studies (a) made different assumptions for the unquantifiable INDCs; (b) ignored or used different methods to estimate the emissions not covered by INDCs; and (c) used different amounts of INDCs because the studies were performed at different times. (2) The studies used different databases that include different greenhouse gases, accounting methods and data sources to estimate historical greenhouse gas emissions. (3) The studies used different methods for estimating greenhouse gas emissions and removals related to land use, land-use change and forestry (LULUCF). (4) The studies used different values of the global warming potential. Additionally, the main reasons for the differences in the predictions of the temperature increase at the end of the 21st century based on INDCs are as follows: (1) Differences in the estimations of greenhouse gas emissions in 2030 based on INDCs and (2) different methods of extrapolating global greenhouse gas emissions to 2100. There are three main extrapolation methods: one is to maintain the net present value of the carbon price in 2030 and then extrapolate the greenhouse gas emissions to 2100; another is to maintain the decarbonization rate of a certain period of history and then extrapolate the greenhouse gas emissions to 2100; the third is to match the emissions reduction scenario with the current INDC emissions reduction scenario from the IPCC AR5 scenario database and then use the matching emissions reduction scenario as the current INDC emissions reduction scenario. The use of different methods of extrapolating carbon emissions is one of the main reasons for the differences in the prediction results. (3) Differences in the methods for predicting the effects of greenhouse gas emissions on temperature. Statistical methods and simulation methods are the two main prediction methods; they use different calculation methods, which led to the difference in the prediction results. Therefore, the following points are worth noting: (1) Most importantly, to the extent possible, countries should submit absolute emissions reduction targets as much as possible; nonquantifiable INDCs without detailed methods descriptions and data introductions should not be submitted; (2) authorities should recommend certain data sets that are the most suitable for INDC accounting; (3) a global warming potential should be designated to avoid differences in greenhouse gas estimates due to the use of different criteria; and (4) to the extent possible, future research should adopt simulation methods for predicting the impact of global greenhouse gas emissions on temperature.
Read full abstract