ConspectusWater-solid interfaces have attracted extensive attention because of their crucial roles in a wide range of chemical and physical processes, such as ice nucleation and growth, dissolution, corrosion, heterogeneous catalysis, and electrochemistry. To understand these processes, enormous efforts have been made to obtain a molecular-level understanding of the structure and dynamics of water on various solid surfaces. By the use of scanning probe microscopy (SPM), many remarkable structures of H-bonding networks have been directly visualized, significantly advancing our understanding of the delicate competition between water-water and water-solid interactions. Moreover, the detailed dynamics of water molecules, such as diffusion, clustering, dissociation, and intermolecular and intramolecular proton transfer, have been investigated in a well-controlled manner by tip manipulation. However, resolving the submolecular structure of surface water has remained a great challenge for a long time because of the small size and light mass of protons. Discerning the position of hydrogen in water is not only crucial for the accurate determination of the structure of H-bonding networks but also indispensable in probing the proton transfer dynamics and the quantum nature of protons.In this Account, we focus on the recent advances in the H-sensitive SPM technique and its applications in probing the structures, dynamics, and nuclear quantum effects (NQEs) of surface water and ion hydrates at the submolecular level. First, we introduce the development of high-resolution scanning tunneling microscopy/spectroscopy (STM/S) and qPlus-based atomic force microscopy (qPlus-AFM), which allow access to the degrees of freedom of protons in both real and energy space. qPlus-AFM even allows imaging of interfacial water in a weakly perturbative manner by measuring the high-order electrostatic force between the CO-terminated tip and the polar water molecule, which enables the subtle difference of OH directionality to be discerned. Next we showcase the applications of H-sensitive STM/AFM in addressing several key issues related to water-solid interfaces. The surface wetting behavior and the H-bonding structure of low-dimensional ice on various hydrophilic and hydrophobic solid surfaces are characterized at the atomic scale. Then we discuss the quantitative assessment of NQEs of surface water, including proton tunneling and quantum delocalization. Moreover, the weakly perturbative and H-sensitive SPM technique can be also extended to investigations of water-ion interactions on solid surfaces, revealing the effect of hydration structure on the interfacial ion transport. Finally, we provide an outlook on the further directions and challenges for SPM studies of water-solid interfaces.
Read full abstract