Abstract

Transition metal dichalcogenides (TMDs) are key players in the two-dimensional materials nanoarena due to their exquisite optoelectronic properties under a standard environment (room temperature and atmospheric pressure). Nevertheless, as reported in the literature, they may also portray interesting physical properties under different environments. Here, we show two distinct and significant electromechanical modulations in TMD nanosheets which are tuned by the environmental conditions (applied pressure and adsorbents). Using scanning probe microscopy techniques, we modify the environmental conditions and observe steplike rises in the electrical response of all studied TMDs (MoS2, WS2, MoSe2, and WSe2—monolayers and few layers). Ab initio calculations enable full understanding of specific mechanisms behind these electromechanical modulations, which may find important applications in the design of TMD-based environmental sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.