This paper proposes a new framework for epileptic seizure detection using non-invasive scalp electroencephalogram (sEEG) signals. The major innovation of the current study is using the Riemannian geometry for transforming the covariance matrices estimated from the EEG channels into a feature vector. The spatial covariance matrices are considered as features in order to extract the spatial information of the sEEG signals without applying any spatial filtering. Since these matrices are symmetric and positive definite (SPD), they belong to a special manifold called the Riemannian manifold. Furthermore, a kernel based on Riemannian geometry is proposed. This kernel maps the SPD matrices onto the Riemannian tangent space. The SPD matrices, obtained from all channels of the segmented sEEG signals, have high dimensions and extra information. For these reasons, the sequential forward feature selection method is applied to select the best features and reduce the computational burden in the classification step. The selected features are fed into a support vector machine (SVM) with an RBF kernel to classify the feature vectors into seizure and non-seizure classes. The performance of the proposed method is evaluated using two long-term scalp EEG (CHB-MIT benchmark and private) databases. Experimental results on all 23 subjects of the CHB-MIT database reveal an accuracy of 99.87%, a sensitivity of 99.91%, and a specificity of 99.82%. In addition, the introduced algorithm is tested on the private sEEG signals recorded from 20 patients, having 1380 seizures. The proposed approach achieves an accuracy, a sensitivity, and a specificity of 98.14%, 98.16%, and 98.12%, respectively. The experimental results on both sEEG databases demonstrate the effectiveness of the proposed method for automated epileptic seizure detection, especially for the private database which has noisier signals in comparison to the CHB-MIT database. Graphical Abstract Block diagram of the proposed epileptic seizure detection algorithm.
Read full abstract