Due to the absence of nerves and blood vessels in articular cartilage, its regeneration and repair present a significant and complex challenge in osteoarthritis treatment. Developing a specialized physical and chemical microenvironment supporting cell growth has been difficult in cartilage grafting, especially when aiming for comprehensive biomimetic solutions. Based on previous research, we have designed a tissue-engineered decellularized living hyaline cartilage graft (dLhCG). The study developed a method to improve the hydrophilicity and stiffness of scaffolds by employing chemical grafting techniques and designed a decellularized hyaline cartilage phenotype matrix scaffold for tissue engineering. Here, we reported a method using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride /N-hydroxysuccinimide (EDC/NHS) to achieve the grafting of chondroitin sulfate (CS) onto dLhCG, ultimately producing a tissue-engineered hyaline cartilage graft with the CS (dLhCG/CS). Young's modulus measurements revealed that the cross-linked scaffolds exhibited enhanced mechanical properties. We implanted the cross-linked dLhCG/CS scaffolds into the trochlear region of rat joints and evaluated their functionality through histological analysis and biomechanical tests. After 12 weeks, the dLhCG/CS scaffolds demonstrated excellent bioinductive activity comparable to dLhCG. The regenerated tissue effectively maintained a hyaline cartilage phenotype and exhibited similar mechanical properties, playing a crucial role in cartilage regeneration.