Abstract
Tissue engineering is an interdisciplinary field that combines materials, methods, and biological molecules to engineer newly formed tissues to replace or restore functional organs. Biomaterials-based scaffolds play a crucial role in developing new tissue by interacting with human cells. Tissue engineering scaffolds with ideal characteristics, namely, nontoxicity, biodegradability, and appropriate mechanical and surface properties, are vital for tissue regeneration applications. However, current biocomposite scaffolds face significant limitations, particularly in achieving structural durability, controlled degradation rates, and effective cellular integration. These qualities are essential for maintaining long-term functionality in vivo. Although commonly utilized biomaterials can provide physical and chemical properties needed for tissue regeneration, inadequate biomimetic properties, as well as insufficient interactions of cells-scaffolds interaction, still need to be improved for the application of tissue engineering in vivo. It is impossible to achieve some essential features using a single material, so combining two or more materials may accomplish the requirements. In order to achieve a proper scaffold design, a suitable fabrication technique and combination of biomaterials with controlled micro or nanostructures are needed to achieve the proper biological responses. This review emphasizes advancements in scaffold durability, biocompatibility, and cellular responsiveness. It focuses on natural and synthetic polymer combinations and innovative fabrication techniques. Developing stimulus-responsive 3D scaffolds is critical, as these scaffolds enhance cell adhesion and promote functional tissue formation while maintaining structural integrity over time. This review also highlights the natural polymers, smart materials, and recent advanced techniques currently used to create emerging scaffolds for tissue regeneration applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.