Ordered mesoporous Santa Barbara amorphous (SBA-15) materials have high surface areas and are widely used in adsorption, separation, filtration, and heterogeneous catalytic processes. However, SBA-15 surfaces contain hydroxyl groups that are unsuited to the adsorption of organic pollutants; thus, SBA-15 must be chemically modified to promote its adsorption activity. In this study, amino-functionalized nanoporous SBA-15 was fabricated by employing sodium silicate as a precursor. The structural characteristics of the prepared composites were examined using thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, and surface area analysis. The prepared SBA-15 had a large pore size (6.46–7.60 nm), large pore volume (1.037–1.105 cm3/g), and high surface area (546–766 m2/g). Functionalization caused a reduction in the SBA-15 pore volume and surface area, whereas amino groups that promoted an interaction between adsorbates and solids facilitated solute adsorption. The adsorption of tannic acid (TA) onto amino-modified silica composites (SBA-15 and 3-aminopropyltriethoxysilane (SBA-15/APTES) and SBA-15 and pentaethylenehexamine (SBA-15/PEHA)) was studied. Their adsorption capacities were affected by solution temperature, solution pH, agitation speed, adsorbent dosage, and initial TA concentration. The maximum adsorption capacities for SBA-15/APTES and SBA-15/PEHA were 485.18 and 413.33 mg/g, respectively, with SBA-15/APTES exhibiting ultrafast removal of TA (98.61% removal rate at 15 min). In addition, this study explored the thermodynamics, adsorption isotherms, and kinetics. A comparison of two types of amino-functionalized SBA-15 was used for the first time to adsorb TA, which providing valuable information on TA adsorption on high adsorption capacity materials in water media.