Abstract

In the present paper, synthesis of SBA-15 nanoparticles was carried out from tetraethyl orthosilicate (TEOS) precursor using the sol-gel process. After being combined with Poly propylene imine, and ZIF-8 they were employed for the removal of Penicillin G. The synthesized combination morphology was assessed using nitrogen adsorption and desorption (BET), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRD). The parameters affecting Penicillin G removal, including pH, amount of adsorbent, time of contact, temperature, and concentration, were optimized, and the optimum levels of the mentioned variables were reported to be pH = 3, 0.03 g, 90 min, 25 °C, and 100 ppm, respectively. In addition, application of Freundlich, Langmuir, Dubinin–Radushkevhch, and Tempkin models and pseudo-first-order and pseudo-second-order adsorption synthetic equations aimed at determining the type of adsorbent isotherm. The results showed that the best fitting of Langmuir (R2 = 0.9944, qm = 400 mg/g) for adsorption isotherm and pseudo-second-order model (R2 = 0.9905) for kinetics studies. Furthermore, data of Gibbs free energy and enthalpy demonstrated an exothermic and spontaneous process in the research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call