Abstract

A non-solvent induced phase separation (NIPS) process was used to fabricate a series of sulfonated polyethersulfone (SPES) membranes blending with different concentrations of SBA-15-g-PSPA with the applications in the ultrafiltration (UF) process. SBA-15 was modified with 3-methacrylate-propyltrimethoxysilane (MPS) to form SBA-15-g-MPS. It was further modified with the charge tailorable polymer chains by reacting with 3-sulfopropyl methacrylate potassium salt. The nanoparticles were uniformly dispersed and finger-like channels were developed within the membrane. The adding of surface modified SBA-15-g-PSPA nanoparticles has significantly improved membrane water permeability, hydrophilicity, and antifouling properties. The pure water fluxes of the composite SPES membranes were significantly higher than the pristine SPES membrane. For the membrane containing 5% (mass) of SBA-15-g-PSPA (MSSPA5), the pure water flux was increased dramatically to 402.15 L∙m –2 ∙h –1 , which is ∼ 1.5 times that of MSSPA0 (268.0 L∙m –2 ∙h –1 ). The high flux rate was achieved with 3% (mass) of SBA-15 nanoparticles with retained high rejection ratio 98% for natural organic matter. The results indicate that the fashioned composite membrane comprising SBA-15-g-PSPA nanoparticles have a promising future in ultrafiltration applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call