For the first time, a rapid, efficient, simple, and inexpensive approach for solid phase microextraction on a screw (MES) was developed. MES is a miniaturized form of solid-phase extraction without any backpressure. In this system, analytes were adsorbed on the surface of micro channels of a screw that was coated by polypyrrole (PPy). Based on this procedure, the analytes are adsorbed on the solid phase and then eluted by a desorption solvent. The MES method followed by gas chromatography–mass spectrometry (MES-GC-MS) was applied for the rapid extraction and determination of six polycyclic aromatic hydrocarbons (PAHs) (as model analytes) in well water samples. Several parameters affecting the extraction procedure, including the sampling flow rate, the number of the loading/desorption cycles of the sample, and the volume of the desorption solvent, were evaluated and optimized. Under optimum conditions, the detection limits for the PAHs varied between 0.5 and 1 μg L−1 and linear ranges varied between 2 and 600 μg L−1. The results showed good correlation coefficients (R > 0.99) for all of the analytes in the studied calibration range. The relative recovery (RR%) of the desired MES–GC–MS method for the studied PAHs was between 83.0 and 104.0% and the interday and intraday precision (n = 5 days), expressed as relative standard deviation (RSD %), were between 3.9-6.2% and 6.2–8.9%, respectively. To evaluate the matrix effect, the developed method was also applied for preconcentration and determination of the selected PAHs in real water samples, and good results were obtained.
Read full abstract