This study primarily focuses on improving the energy resolution of Double-Sided Silicon Strip Detectors (DSSSD) through optimized data analysis procedures using General Electronics for Time Projection Chambers (GET). We introduce two edge identification algorithms that demonstrate comparable efficacy. These methods are subsequently integrated with various techniques for measuring pulse amplitude, including sample smoothing and pole-zero cancellation. Notably, sample smoothing significantly enhances performances, achieving a resolution of 0.33% with DSSSD α calibration data. Additionally, we describe and apply the trapezoidal filter, examining its impact on resolution improvement and obtaining comparable results. The study also evaluates how internal GET parameters, specifically the sampling frequency and the shaping time of the Sallen-Key (SK) low-pass filter, affect signal resolution. Higher sampling frequencies and lower values of the SK filter were found to increase performance.
Read full abstract