Abstract

A soft fault in an analog circuit is a symptom where the parameter range of a component exists symmetrically to the left and right of its nominal value and exceeds a specific range. The proposed method uses the Grey Wolf Optimization (GWO) optimized tunable Q-factor wavelet transform (TQWT) algorithm for feature refinement, the Inception model for feature extraction, and an SVM for fault diagnosis. First, the Q-factor is optimized to make it more compatible with the signal. Second, the signal is decomposed, and a single-branch reconstruction is performed using the TQWT to extract features adequately. Then, fault feature extraction is conducted using the Inception model to obtain multiscale features. Finally, a Support Vector Machine (SVM) is used to complete the entire fault diagnosis process. The proposed method is comprehensively evaluated using the Sallen–Key bandpass filter circuit and the four-op-amp biquad high-pass filter circuit widely used in electronic systems. The experimental results prove that the proposed method outperforms the existing methods in terms of diagnosis accuracy and reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.