Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var. Changbai-9) and sensitive (Oryza sativa var. Kitaake) rice grown in saline-alkali and non-saline-alkali soils. The results demonstrated that the saline-alkali tolerant rice enriched the rhizosphere bacteria taxa, including Hydrogenophaga, Pseudomonas, and Aeromonas, and fungi taxa, such as Chaetomium, Cladosporium and Tausonia, which may facilitate rice growth and enhance rice saline-alkali tolerance. Saline-alkali tolerant rice reduced the Na+/K+ ratio and improved rice yield by enhancing the stability of co-occurrence network associated with recruiting bacterial and fungal keystone species. The rhizosphere bacteria of the saline-alkali tolerant rice exhibited a markedly elevated expression of functions related to the saline-alkali tolerance, including the ABC transporter and the two-component system, compared to sensitive rice under saline-alkali stress. Overall, the saline-alkali tolerant rice responds to saline-alkali stress by recruiting keystone rhizosphere microorganisms to enhance rice saline-alkali tolerance. This study provides a theoretical basis for using specific microorganisms to improve plant tolerance in saline-alkali soils.
Read full abstract