Abstract

Saline-alkali stress seriously endangers the normal growth of cotton (Gossypium hirsutum). Arbuscular mycorrhizal fungi (AMF) could enhance salt tolerance by establishing symbiotic relationships with plants. Based on it, a pot experiment was conducted to simulate a salt environment in which cotton was inoculated with Paraglomus occultum to explore its effects on the saline-alkali tolerance of cotton. Our results showed that salt stress noticeably decreased cotton seedling growth parameters (such as plant height, number of leaves, dry weight, root system architecture, etc.), while AMF exhibited a remarkable effect on promoting growth. It was noteworthy that AMF significantly mitigated the inhibitory effect of salt on cotton seedlings. However, AMF colonization in root and soil hyphal length were collectively descended via salt stress. With regard to osmotic regulating substances, Pro and MDA values in roots were significantly increased when seedlings were exposed to salt stress, while AMF only partially mitigated these reactions. Salt stress increased ROS levels in the roots of cotton seedlings and enhanced antioxidant enzyme activity (SOD, POD, and CAT), while AMF mitigated the increases in ROS levels but further strengthened antioxidant enzyme activity. AMF inoculation increased the photosynthesis parameters of cotton seedling leaves to varying degrees, while salt stress decreased them dramatically. When inoculated with AMF under a salt stress environment, only partial mitigation of these photosynthesis values was observed. Under saline-alkali stress, AMF improved the leaf fluorescence parameters (φPSII, Fv'/Fm', and qP) of cotton seedlings, leaf chlorophyll levels, and root endogenous hormones (IAA and BR); promoted the absorption of water; and maintained nitrogen balance, thus alleviating the damage from salt stress on the growth of cotton plants to some extent. In summary, mycorrhizal cotton seedlings may exhibit mechanisms involving root system architecture, the antioxidant system, photosynthesis, leaf fluorescence, endogenous hormones, water content, and nitrogen balance that increase their resistance to saline-alkali environments. This study provide a theoretical basis for further exploring the application of AMF to enhance the salt tolerance of cotton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.