Electrochemical energy conversion technologies based on the oxygen evolution reaction (OER) are at the heart of many efforts to achieve a sustainable future, carbon-free fuel, and a circular economy. The sluggish kinetics of oxygen electrocatalysis, as well as the high overpotential required to attain practical current densities, limit the efficiency of several promising electrochemical technologies, including water and carbon dioxide electrolyzers, metal–oxygen batteries, and fuel cells. The most efficient OER catalysts are precious metals such as iridium- and ruthenium-based materials (i.e., IrO2 and RuO2). This fact represents a challenge against the cost-effective implementation of these electrolysis technologies.1-3 The rich chemistry of nanoporous materials provides an opportunity for the development of cost effective PGM-free OER catalysts, with equivalent or superior activity and durability to the PGM catalysts.4-7 Metal organic framework (MOF)-based OER catalysts with high activity and long-term stability in alkaline electrolytes will be discussed in this presentation. We will discuss the relationship between MOF morphology and metal-ion loading, and how their impact on OER activity.Acknowledgements: Argonne National Laboratory is managed for the U.S Department of Energy (DOE) by the University of Chicago Argonne, LLC, under contract DE-AC-02-06CH11357. This work was performed under the auspices of the Electrocatalysis Consortium (ElectroCat 2.0), a DOE Office of Energy Efficiency, Hydrogen and Fuel Cell Technologies (HFTO) consortium. Electron microscopy was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.References Katsounaros, Ioannis, Serhiy Cherevko, Aleksandar R. Zeradjanin, and Karl JJ Mayrhofer. "Oxygen electrochemistry as a cornerstone for sustainable energy conversion." Angewandte Chemie International Edition53, no. 1 (2014): 102-121.Lee, Youngmin, Jin Suntivich, Kevin J. May, Erin E. Perry, and Yang Shao-Horn. "Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions." The journal of physical chemistry letters3, no. 3 (2012): 399-404.Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Today 262, 170–180 (2016).Nahar, Lamia, Ahmed A. Farghaly, Richard J. Alan Esteves, and Indika U. Arachchige. "Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths." Chemistry of Materials29, no. 18 (2017): 7704-7715.Farghaly, Ahmed A., Rezaul K. Khan, and Maryanne M. Collinson. "Biofouling-resistant platinum bimetallic alloys." ACS applied materials & interfaces10, no. 25 (2018): 21103-21112.Khan, Rezaul K., Ahmed A. Farghaly, Tiago A. Silva, Dexian Ye, and Maryanne M. Collinson. "Gold-Nanoparticle-Decorated Titanium Nitride Electrodes Prepared by Glancing-Angle Deposition for Sensing Applications." ACS Applied Nano Materials2, no. 3 (2019): 1562-1569.Farghaly, Ahmed A., Mai Lam, Christopher J. Freeman, Badharinadh Uppalapati, and Maryanne M. Collinson. "Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold." Journal of The Electrochemical Society 163, no. 4 (2015): H3083.