Abstract

Machine-learning interatomic potentials, such as Gaussian Approximation Potentials (GAPs), constitute a powerful class of surrogate models to computationally involved first-principles calculations. At a similar predictive quality but significantly reduced cost, they could leverage otherwise barely tractable extensive sampling as in global surface structure determination (SSD). This efficiency is jeopardized though, if an a priori unknown structural and chemical search space as in SSD requires an excessive number of first-principles data for the GAP training. To this end, we present a general and data-efficient iterative training protocol that blends the creation of new training data with the actual surface exploration process. Demonstrating this protocol with the SSD of low-index facets of rutile IrO2 and RuO2, the involved simulated annealing on the basis of the refining GAP identifies a number of unknown terminations even in the restricted sub-space of (1 × 1) surface unit cells. Particularly in an O-poor environment, some of these, then metal-rich terminations, are thermodynamically most stable and are reminiscent of complexions as discussed for complex ceramic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.