Abstract

Abstract A thermal process was employed to prepare a catalyst consisting of a mixture of metallic-Pt and rutile RuO2 nanocrystals. This catalyst was used for the electrooxidation of 2-propanol in an alkaline solution. The effect of the catalyst composition on its microstructure, surface properties and catalytic activity was examined. With increasing the RuO2 content, the catalytic activity increases, reaches its maximum and then decreases. The catalytic effect is a result of the bifunctional mechanism of the mixture of Pt and RuO2 nanocrystals. The RuOHad particles are formed on Ru atoms of the RuO2 nanocrystals at potentials more negative than on Pt atoms. These oxy-species facilitate the dehydrogenation, breaking of C–C bonds and oxidation of both 2-propanol and its intermediates, adsorbed on assemblies of adjacent Pt atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.