Anopheles arabiensis, a highly adaptable member of the Anopheles gambiae complex, poses a challenge for control efforts due to its outdoor biting and resting behaviour. Consequently, indoor insecticide-based control methodsare ineffective against An. arabiensis. Furthermore, An. arabiensis are adapting to breeding in polluted waters, and may be contributing to residual malaria and malaria in urban areas. There have been some advances in understanding the effect of rural pollutants on Anopheles mosquitoes, but the effect of urban pollutants is poorly understood. Thus, in this study, the effect of acidic pollutants [nitric acid (HNO3) and hydrochloric acid (HCl)] and alkaline pollutants (phosphate-free and phosphate-containing detergent) on two laboratory-reared An. arabiensis strains - an insecticide susceptible strain (SENN) and an insecticide-resistant strain selected from SENN (SENN-DDT) - were determined. The median lethal concentration (LC50) and larval exposure on larval development, adult longevity and insecticide tolerance were evaluated. Nitric acid and phosphate-containing detergent were found to be more toxic than HCl and phosphate-free detergent in terms of LC50 values. Detergent exposure (both phosphate-containing and phosphate-free) increased adult longevity of both strains. Nitric acid reduced larval development time in both SENN and SENN-DDT, whereas HCl reduced larval development time in SENN only. By contrast, both phosphate-containing and phosphate-free detergents increased larval development time of both strains. Furthermore, HNO3 and phosphate-containing detergent increased insecticide tolerance the most. The two An. arabiensis strains responded to urban pollutants differently. Thus, this study provides insight into the adaptation of An. arabiensis to acidic and alkaline urban pollutants. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Read full abstract