Abstract Rapid increase in sensor electronics has expanded the call for sensor networks in IoT-based devices. Smart grid is a part of IoT framework, which can be used to screen and manage traffic congestion, electricity influxes, extreme weather, and so on. This is done through a network of transmission lines, smart sensors, and smart meters. It is required to distribute and accumulate information remotely on timely basis from different stages of the grid. The periodic data from the smart meters are transferred to MDMS through WSN’s. In WSN’s, depletion of energy due to unequal load on the sensors is a serious issue, which is to be addressed as it affects the operations of the entire network. To assist these traffic requirements and to boost the network lifetime, asynchronous work sleep cycle approach can be used to create node connections. In this article, an energy-efficient adaptive fuzzy-based multi-disjoint routing protocol in WSN’s for smart grids abbreviated as (MDRP) is proposed, where the next hop node is decided through fuzzy logic. Once the subsequent node is decided, a spanning tree is constructed with the sink node as its root, which calculates the optimal path cost, to transmit the collected data. Furthermore, the simulation results show that the proposed MDRP performs better in terms of network lifetime, packet delivery ratio, total energy consumption, etc.
Read full abstract