The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.
Read full abstract