Using the three-dimensional discrete element method, we numerically investigate the collapse dynamics and deposition morphology of low-viscocohesive granular columns on a rough-horizontal plane by systematically varying a broad range of values of the initial column aspect ratio, cohesive stress, and liquid viscosity. The results show that the kinetic energy, half runout time, and runout distance increase with increasing the initial column aspect ratio but decrease with increasing the cohesive and viscous effects of the binding liquid, while the toe angle and deposit height decrease with increasing the aspect ratio and increase with increasing cohesive stress and liquid viscosity. Remarkably, by defining a dimensionless scaling number that incorporates the Bond number and initial column aspect ratio, this allows us to nicely describe the kinetic energy, half runout time, deposition height, runout distance, and toe angle. These unified descriptions may provide insights into the physical properties of the collapse dynamics and deposition morphology of low-viscocohesive granular columns, leading to good explanations of the complex properties of natural disaster events.
Read full abstract