Abstract
A heavy balanced nonhomogeneous ball moving on a rough horizontal plane is considered. The classical model of a “marble” body means a single point of contact, where sliding is impossible. We suggest that the contact forces be described by Coulomb’s law and show that in the final motion there is no sliding. Another, relatively new, contact model is the “rubber” ball: there is no sliding and no spinning. We treat this situation by applying a local Coulomb law within a small contact area. It is proved that the final motion of a ball with such friction is the motion of the “rubber” ball.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.