As device dimensions in electronic and optoelectronic devices are reduced, the characteristics and interactions of dimensionally-confined longitudinal-optical (LO) and acoustic phonons deviate substantially from those of bulk semiconductors. Furthermore, as würtzite materials are applied increasingly in electronic and optoelectronic devices it becomes more important to understand the phonon modes in such systems. This account emphasizes the properties of bulk optical phonons in würtzite structures, the properties of LO-phonon modes and acoustic-phonon modes arising in polar-semiconductor quantum wells, superlattices, quantum wires and quantum dots, with a variety of cross sectional geometries and, lastly, the properties of optical phonons in würtzite materials as predicted by the dielectric continuum model. Emphasis is placed on the dielectric continuum and elastic continuum models of bulk, confined and interface phonons. This article emphasizes device applications of confined phonons in GaAs-based systems and provides a brief discussion of carrier-LO-phonon interactions in bulk würtzite structures. This account also includes discussions on the use of metal-semiconductor heterointerfaces to reduce scattering and on the role of phonons in Fröhlich, deformation and piezoelectric interactions in electronic and optoelectronic structures; specific device applications high-lighted here include quantum cascade lasers, mesoscopic devices, thermoelectric devices and optically-pumped resonant intersubband lasers.