This study focuses on improving the performance of steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs) for robotic control systems. The challenge lies in effectively reducing the impact of artifacts on raw data to enhance the performance both in quality and reliability. The proposed MVMD-MSI algorithm combines the advantages of multivariate variational mode decomposition (MVMD) and multivariate synchronization index (MSI). Compared to widely used algorithms, the novelty of this method is its capability of decomposing nonlinear and non-stationary EEG signals into intrinsic mode functions (IMF) across different frequency bands with the best center frequency and bandwidth. Therefore, SSVEP decoding performance can be improved by this method, and the effectiveness of MVMD-MSI is evaluated by the robot with 6 degrees-of-freedom. Offline experiments were conducted to optimize the algorithm's parameters, resulting in significant improvements. Additionally, the algorithm showed good performance even with fewer channels and shorter data lengths. In online experiments, the algorithm achieved an average accuracy of 98.31% at 1.8s, confirming its feasibility and effectiveness for real-time SSVEP BCI-based robotic arm applications. The MVMD-MSI algorithm, as proposed, represents a significant advancement in SSVEP analysis for robotic control systems. It enhances decoding performance and shows promise for practical application in this field.
Read full abstract