Abstract

This article proposes a novel recognition algorithm for the steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) system. By combining the advantages of multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA), an MVMD-CCA algorithm is investigated to improve the detection ability of SSVEP electroencephalogram (EEG) signals. In comparison with the classical filter bank canonical correlation analysis (FBCCA), the nonlinear and non-stationary EEG signals are decomposed into a fixed number of sub-bands by MVMD, which can enhance the effect of SSVEP-related sub-bands. The experimental results show that MVMD-CCA can effectively reduce the influence of noise and EEG artifacts and improve the performance of SSVEP-based BCI. The offline experiments show that the average accuracies of MVMD-CCA in the training dataset and testing dataset are improved by 3.08% and 1.67%, respectively. In the SSVEP-based online robotic manipulator grasping experiment, the recognition accuracies of the four subjects are 92.5%, 93.33%, 90.83%, and 91.67%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.