Abstract

Autonomous robots operating in everyday environments, such as hospitals, private houses, and public roads, are context-aware self-adaptive systems, i.e. they exploit knowledge about their resources and the environment to trigger runtime adaptation, so that they exhibit a behavior adequate to the current context. For these systems, context-aware self-adaptation requires to design the robot control application as a dynamically reconfigurable software architecture and to specify the adaptation logic for reconfiguring its variable aspects (e.g. the modules that implement various obstacle detection algorithms or control different distance sensors) according to specific criteria (e.g. enhancing robustness against variable illumination conditions). Despite self-adaptation is an intrinsic capability of autonomous robots, ad-hoc approaches are used in practice to design reconfigurable robot architectures. In order to enhance system maintainability, the control logic and the adaptation logic should be loosely coupled. For this purpose, the adaptation logic should be defined against an explicit representation of software variability in the robot control architecture. In this paper we propose a modeling approach, which consists in explicitly representing robot software variability with the MARTE::ARM-Variability metamodel, which has been designed as an extension of the UML MARTE profile. We evaluate the applicability of the proposed approach by exemplifying the software architecture design of a robot navigation framework and by analyzing the support provided by the ROS infrastructure for runtime reconfiguration of its variable aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.