This article studies the neuroadaptive full-state constraints control problem for a class of electromagnetic active suspension systems (EASSs). First, the original constraint system with arbitrary initial values is transformed into a new constraint system with zero initial values by using the shift function method. Then, a new kind of cotangent-type nonlinear state-dependent transition function is constructed to solve the asymmetric time-varying full-state constraints control problem, which eliminates the limitation that the virtual controller needs to satisfy the feasibility conditions in the previous full-state constraints control based on Barrier Lyapunov Function (BLF) and Integral BLF. Furthermore, the neural networks (NNs) are used as nonlinear function approximators to deal with the unknown nonlinear dynamics of EASSs, a neuroadaptive full-state constraints control design method is proposed under the Backstepping recursive design framework. Finally, the effectiveness of the proposed method is verified by a simulation of EASSs with road disturbances.
Read full abstract