Abstract

This paper proposes an H∞ Non Linear Parameter Varying (NLPV) observer for fault estimation in semi-active Electro-Rheological (ER) suspensions. The damper fault (a loss-of-efficiency factor) is modeled as a lost force of unknown/free dynamics to be estimated. Thanks to the parameter-dependent descriptor-form system modeling, there is no assumption made on the fault dynamics, thus making this method applicable to all considered types of damper faults. The nonlinearity in the damper model is bounded by its Lipschitz property, while the road disturbance and the measurement noise are handled using the H∞ condition. The observer is parameterized and then designed by solving Linear Matrix Inequalities (LMIs) and is implemented in a polytopic gain scheduling approach. Synthesis results including Bode plots and simulations illustrate the method in both the frequency and the time domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.