Analog circuits composed by large number of nodes in a tightly coupled structure pose significant challenges due to their prohibitive CPU simulation time. This work describes a method to speed up the simulation of such circuits by means of the combination of space state formulation of circuit equations with explicit integration methods parallelized over a many-core processor such as a GPU. Although stability of explicit techniques require smaller integration steps compared to implicit methods, the proposed method employs a fast estimate of the maximum allowed step size to guarantee numerical stability, which yields a shorter simulation time for increasing complexity circuit architectures. Moreover, the proposed technique can be straightforward parallelized on a many core architecture. The proposed method is demonstrated with two examples using constant and variable coefficients respectively: an RLC interconnect and a MOS-C network to perform Gaussian filtering of medium resolution images. The results obtained have been compared to a parallel version of SPICE and show improvements up to two orders of magnitude for transient simulations depending of the circuit size.
Read full abstract