To explore the value of the attenuation values of all thoracic vertebrae and the first lumbar vertebra measured by artificial intelligence on non-enhanced chest CT to do osteoporosis screening. On base of images of chest CT, using artificial intelligence (AI) to measure the attenuation values (HU) of all thoracic and the first vertebrae of patients who underwent CT examination for lung cancer screening and dual-energy X-ray absorptiometry (DXA) examination during the same period. The patients were divided into three groups: normal group, osteopenia group, and osteoporosis group according to the results of DXA. Clinical baseline data and attenuation values were compared among the three groups. The correlation between attenuation values and BMD values was analyzed, and the predictive ability and diagnostic efficacy of attenuation values of thoracic and first lumbar vertebrae on osteopenia or osteoporosis risk were further evaluated. CT values of each thoracic vertebrae and the first lumbar vertebrae decreased with age, especially in menopausal women and presented high predictive ability and diagnostic efficacy for osteopenia or osteoporosis. After clinical data correction, with every 10 HU increase of CT values, the risk of osteopenia or osteoporosis decreased by 32 ~ 44% and 61 ~ 80%, respectively. And the combined diagnostic efficacy of all thoracic vertebrae was higher than that of a single vertebra. The AUC of recognizing osteopenia or osteoporosis from normal group was 0.831and 0.972, respectively. The routine chest CT with AI is of great value in opportunistic screening for osteopenia or osteoporosis, which can quickly screen the population at high risk of osteoporosis without increasing radiation dose, thus reducing the incidence of osteoporotic fracture.
Read full abstract