This article presents a comprehensive statistical evaluation of defect frequency in fire alarm systems under real operating conditions, focusing on risk-based factors. The aim is not to introduce a complete RBI approach but rather to assess defect trends that can inform future RBI-based inspection strategies. The study categorizes and evaluates defects by frequency, particularly examining components such as cable and wire systems, acoustic signal devices, and the impact of detector contamination. These findings establish a foundation for developing tailored risk-based inspection and predictive maintenance strategies. A three-stage explanatory research design was employed, analyzing 4629 inspection reports with findings verified through expert surveys and cross-sample analysis. Results indicate that certain components, including acoustic devices and detectors, exhibit a significant increase in defects after 10 years, especially under challenging environmental conditions. Additionally, while ring bus technology supports less frequent functional testing, cable and wire systems require heightened attention in the early operational years. The study also identifies statistically significant trends and their potential for application to a broader system population, supporting enhanced RBI-based maintenance practices. These insights contribute to refining current maintenance approaches and offer practical recommendations for optimizing inspection routines based on risk factors. The article does not propose a system overhaul but lays essential groundwork for further research and improvement in fire alarm system reliability through targeted, risk-informed practices.
Read full abstract