PurposeTo evaluate in a sample of normal and keratoconic eyes a simple Bayesian network classifier for keratoconus identification that uses previously developed topographic indices, calculated directly from the digital analysis of the Placido ring images. MethodsA comparative study was performed on a total of 60 eyes from 60 patients (age 20–60 years) from the Department of keratoconus of INVISION Ophthalmology clinic (Almería, Spain). Patients were divided into two groups depending on their preliminary diagnosis based on the classical topographic criteria: a control group without topographic alteration (30 eyes) and a keratoconus group (30 eyes). The keratoconus group included all grades except grade IV with excessively distorted corneal topography. All cases were examined using the CSO topography system (CSO, Firenze, Italy), and primary corneal Placido-indices were computed, as described in literature. Finally, a classifier was built by fitting a conditional linear Gaussian Bayesian network to the data, using the 5- and 10-fold cross-validation. For comparison, the original data were perturbed with random white noise of different magnitude. ResultsThe naïve Bayes classifier showed perfect discrimination ability among normal and keratoconic corneas, with 100% of sensibility and specificity, even in the presence of a very significant noise. ConclusionsThe Bayesian network classifiers are highly accurate and proved a stable screening method to assist ophthalmologists with the detection of keratoconus, even in the presence of noise or incomplete data. This algorithm is easily implemented for any Placido topographic system.
Read full abstract