Abiotic stress is one of the major factors restricting the production of rice (Oryza sativa L.). Developing rice varieties with dual abiotic stress tolerance is essential to ensure sustained rice production, which is necessary to illustrate the regulation mechanisms underlying dual stress tolerance. At present, only a few genes that regulate dual abiotic stress tolerance have been reported. In this study, we determined that the expression of OsMT2b was induced by both drought and Cd2+ stress. After stress treatment, OsMT2b-overexpression lines exhibited enhanced drought tolerance and better physiological performance in terms of relative water content and electrolyte leakage compared with wild-type (WT). Further analysis indicated that ROS levels were lower in OsMT2b-overexpression lines than in WT following stress treatment, suggesting that OsMT2b-overexpression lines had a stronger ability to scavenge ROS under stress. Reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that under drought stress, OsMT2b influenced the expression of genes involved in ROS scavenging to enhance drought tolerance in rice. In addition, OsMT2b-overexpression plants displayed increased tolerance to Cd2+ stress, and physiological assessment results were consistent with the observed phenotypic improvements. Thus, enhancing ROS scavenging ability through OsMT2b overexpression is a novel strategy to boost rice tolerance to both drought and Cd2+ stress, offering a promising approach for developing rice germplasm with enhanced resistance to the abiotic stressors.
Read full abstract