Abstract

In recent decades, plants enduring abiotic stresses such as drought and chemical stresses. Currently, the mechanism of combined antibiotic and drought stress response and its impact on crop growth and food security remains poorly understood. Here, the mechanism of stress responses under the exposure of norfloxacin (NF) and drought (D) individually and in combination (DNF) were explored on rice (Oryza sativa) cultivar Hanyou73 through proteomics and metabolomic analysis. All treatments adversely affected chlorophyll fluorescence kinetics, antioxidant enzyme activities, rice grain composition and yield. The results showed that in DNF the antibiotic was accumulated 627% more than NF treatment in rice grains while in leaves there was no significant difference under both treatments. The proteomic revealed that differentially expressed identified proteins were involved in carbohydrate metabolism, amino acid metabolism, photosynthesis and mRNA binding. However, the metabolomics results showed that the abundance of metabolites related to RNA biosynthesis and amino acid metabolism were more affected. The disruptions caused in rice plant under DNF treatment become more severe, this makes it more susceptible than individual D and NF treatment. These findings improve our knowledge about the response of rice plant to cope with antibiotic contamination alone and in combination with drought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.