Uranium is a key element in the preparation of nuclear fuel. An electrochemical uranium extraction technique is proposed to achieve high efficiency uranium extraction performance through HER catalyst. However, it is still a challenge to design and develop a high-performance hydrogen evolution reaction (HER) catalyst for rapid extraction and recovery of uranium from seawater. Herein, a bi-functional Co, Al modified 1T-MoS2 /reduced graphene oxide (CA-1T-MoS2 /rGO) catalyst, showing a good HER performance with a HER overpotential of 466mV at 10mA cm-2 in simulated seawater, is first developed. Benefiting from the high HER performance of CA-1T-MoS2 /rGO, efficient uranium extraction is achieved with a uranium extraction capacity of 1990mg g-1 in simulated seawater without post-treatment, exhibiting a good reusability. The results of experiments and density functional theory (DFT) show that a high uranium extraction and recovery capability is attributed to the synergy effect of the improved HER performance and the strong adsorption capacity between U and OH*. This work provides a new strategy for the design and preparation of bi-functional catalysts with high HER performance and uranium extraction and recovery capabilities in seawater.
Read full abstract