Abstract

In the present work, the aim is to synthesize reduced graphene oxide (rGO) and zinc:reduced graphene oxide composite catalysts (ZnO:rGO) for esterification of acetic acid with n-heptanol. The physical and chemical characteristics of the rGO and rGO-metal oxide composite catalysts such as textural surface characteristics, surface morphology, thermal stability, functional groups, and elemental analysis were studied. The surface areas of rGO, ZnO(0.5 M), and ZnO(1 M) were recorded, respectively, at 31.72, 27.65, and 36.19 m2 g–1. Furthermore, esterification reaction parameters such as the reaction time, catalyst dosage, and reaction temperature for acetic acid were optimized to check the feasibility of rGO-metal oxide composites for a better conversion percentage of acetic acid. The optimized catalyst was selected for further optimization, and the optimum reaction parameters found were 0.1 wt % of catalyst, 160 min reaction duration, and 100 °C reaction temperature with a maximal yield of 100%. At 110 °C, the reaction conducted in the presence of 0.1 g of catalyst displayed more yield than the uncatalyzed reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.