Abstract

In this contribution, CoW/X materials (X = CNT or CNF) were utilized as oxidative desulfurization (ODS) catalysts for the removal of dibenzothiophene (DBT) from a model fuel (n-decane), incorporating the H2O2 as an efficient oxidant. Different operating conditions were investigated. Both compounds revealed high desulfurization efficiency using milder operating conditions leading to low levels of the DBT compound since only 1h while using a low ratio of H2O2/S = 6. Among synthesized compounds, the CoW (15)/CNT showed superior DBT conversion through the ODS process. In other words, the highest sulfur removal efficiency of 100% for a feed sulfur content of 500ppm was determined in a 40-min duration under optimum conditions. This was satisfyingly more effective than a recently reported CoW (20)/rGO catalyst. The characterization of synthesized catalysts was performed in order to evaluate their physicochemical properties. Moreover, product identification of the oxidation desulfurization process was performed using the GC-Mass, FTIR, and NMR techniques where it was found that this process was that of a single product. These experimental studies were complemented with density functional theory (DFT) investigations, which indeed shed important light on understanding the adsorption mechanisms as well as electronic properties of the system undertaken.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call