Abstract
Heteropolyanion substituted layered double hydroxide were synthesized and used as catalysts for oxidative desulfurization in simulated fuel oil (dibenzothiophene (DBT) inn-octane) or diesel. The catalysts are recoverable and operate with high conversion efficiency under mild conditions of atmospheric pressure and 60 °C in a biphasic system using peroxide hydrogen as oxidant and acetonitrile as extractant. Zn9Al3(OH)24PW12O40(ZnAlPW), Zn9Al3(OH)24PMo12O40(ZnAlPMo) and Zn12Al4(OH)32SiW12O40(ZnAlSiW) were identified as effective catalysts for the oxidative removal of DBT from simulated fuel oil. The order of decreasing catalytic activity is ZnAlPMo > ZnAlPW > ZnAlSiW. The results show that the best catalysts, ZnAlPMo, attained to a DBT conversion of nearly 100%. All the catalysts can be readily recycled by filtration after use. The recoverable ZnAlPMo retains nearly the same catalytic activity as the fresh. ZnAlPMo was found to exhibit an ideal catalytic activity in oxidative desulfurization of diesel with a total sulfur removal rate of 91.8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.