Abstract

Perovskites are an emerging material with a variety of applications, ranging from their solar light conversion capability to their sensing efficiency. In current study, perovskite nanocrystals (PNCs) were designed using theoretical density functional theory (DFT) analysis. Moreover, the theoretically designed PNCs were fabricated and confirmed by various characterization techniques. The calculated optical bandgap from UV-Vis and fluorescence spectra were 2.15 and 2.05eV, respectively. The average crystallite size of PNCs calculated from Scherrer equation was 15.18nm, and point of zero charge (PZC) was obtained at pH 8. The maximum eosin B (EB) removal efficiency by PNCs was 99.56% at optimized conditions following first-order kinetics with 0.98 R2 value. The goodness of the response surface methodology (RSM) model was confirmed from analysis of variance (ANOVA), with the experimental F value (named after Ronald Fisher) of 194.66 being greater than the critical F value F0.05, 14, 14 = 2.48 and a lack of fit value of 0.0587. The Stern-Volmer equation with a larger Ksv value of for Pb2+ suggests its greater sensitivity for Pb2+ among the different metals tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.