The paper proposes measures for weighted indexing of sports news videos. The content-based analyses of sports news videos lead to the classification of frames or shots into sports categories. A set of sports categories reported in a given news video can be used as a video representation in visual information retrieval system. However, such an approach does not take into account how many sports events of a given category have been reported and how long these events have been presented in news for televiewers. Weighting of sports categories in a video representation reflecting their importance in a given video or in a whole video data base would be desirable. The effects of applying the proposed measures have been demonstrated in a test video collection. The experiments and evaluations performed on this collection have also shown that we do not need to apply perfect content-based analyses to ensure proper weighted indexing of sports news videos. It is sufficient to recognize the content of only some frames and to determine the number of shots, scenes or pseudo-scenes detected in temporal aggregation process, or even only the number of events of a given sports category in a sports news video being indexed.
Read full abstract