Abstract

Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that involve many layers of nonlinear processing. In this article, we review several popular deep learning models, including deep belief networks and deep Boltzmann machines. We show that (a) these deep generative models, which contain many layers of latent variables and millions of parameters, can be learned efficiently, and (b) the learned high-level feature representations can be successfully applied in many application domains, including visual object recognition, information retrieval, classification, and regression tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.