We evaluated angiogenic responses in the left ventricular muscle and aerobic capacity according to exercise type (aerobic, resistance, combined) in aged rats. In total, 24 male Sprague-Dawley rats (100weeks old) were used. To investigate the effect of regular training, the rats were divided into non-exercise (NE), aerobic exercise (AE), resistance exercise (RE), and combined exercise (CE) groups (six rats per group). Regular training tailored to each exercise type was performed for 8weeks (five times a week, 1h per day). After 8weeks of training, aerobic capacity was evaluated by a treadmill running test. Left ventricular muscle tissue was collected and the protein levels of angiogenesis indicators (eNOS, HIF-1α, PGC-1α, VEGF, FLK-1, Ang-1, Ang-2) were analyzed by Western blotting. Capillaries were observed by immunohistochemical staining for CD31. Body weight, heart weight, and heart/body weight ratio showed no difference among the groups. The AE and CE groups showed higher treadmill running capacity than the NE and RE groups. The eNOS, VEGF, HIF-1α, PGC-1α, and Ang-2 protein levels were significantly higher in the AE than NE group. The PGC-1α and FLK-1 protein levels were significantly higher in the RE than NE group. In addition, in the CE group, the eNOS, FLK-1, and PGC-1α protein levels were significantly higher than in the NE group. Expression of CD31 in cardiac tissue was higher in the AE and CE groups than in the other groups. Taken together, the results suggest that regular exercise training, irrespective of exercise type, might improve cardiovascular function by inducing angiogenic responses in the aged myocardium; however, AE may be the most effective.