With the increasing global demand for sustainable energy, the importance of advanced nuclear technologies, such as fourth-generation reactors, has become increasingly prominent. Fourth-generation reactors often use non-water coolants, among which liquid lead and lead–bismuth eutectics (LBEs) are highly promising, making lead-cooled fast reactors (LFRs) a popular area of research internationally. On the basis of extensive analysis and comparison conducted previously, this article summarizes and analyzes the advantages, problems, and differences in lead and LBE as LFR coolants. Overall, both lead and LBE have excellent neutronic characteristics, good heat transfer performance, and chemical inertness, and make LFRs highly efficient in nuclear fuel utilization, inherently safe, and relatively simplified in design. However, both of them corrode materials severely and produce highly toxic 210Po, which are the problems that need to be considered for further engineering development. Moreover, LBE has a lower melting point, which allows a wider temperature range and lower insulation requirements in its design, making it easier to achieve engineering and miniaturization under the same conditions. Lead has a lower cost, is less corrosive to materials, and produces less 210Po, which makes it a more ideal coolant for future development.
Read full abstract