Abstract
This study introduces the application of software simulations to evaluate the performance of triple-pane glass windows to meet the requirements for energy-efficient thermal insulation. Using Therm 7.8.55 and Window 7.8.55 software, structural and physical heat transfer models for various single-frame plastic windows were developed. Numerical simulation methods were employed to calculate and analyse the impact of the number of glass layers on the windows' thermal performance, including the heat transfer coefficient and solar heat gain coefficient, to elucidate the energy-saving mechanisms. These simulations examined the physical properties of single-frame triple-glazed plastic windows, such as wind pressure resistance, airtightness, watertightness, and potential condensation on the inner surface. The results indicate that, under identical conditions, the heat transfer coefficient of single-frame triple-glazed plastic windows is reduced by 7.08%, and the solar heat gain coefficient is decreased by 4.18% compared to single-frame double-glazed plastic windows. Additionally, these windows' physical and economic performance meets the necessary standards. Furthermore, incorporating new materials such as Low-E glass can further enhance the thermal performance of the windows, significantly contributing to the reduction of overall building energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.