Abstract

In several developing countries, energy performance rating programs are currently in progress. Complex fenestration systems (CFS) are building components that play a key role in reducing energy consumption. The development and testing of equipment is central for beginning the energy efficiency rating process of complex glazing systems in these countries. This paper validates the use of a low-cost hot-cold box calorimeter for measurement of the solar heat gain coefficient (SGHC) and overall heat transfer coefficient (U-value) of interior shading systems. This work aims to determine the energy performance of three types of often employed shading systems: solar control films, interior horizontal venetian blinds, and indoor drapery curtains. Results show that the energy performance of solar shading devices studied depends on both their morphological and optical properties. The shading systems analyzed present similar U-values, where technological features are represented by the thickness and the thermal conductivity of the material. SHGC is mainly defined by the transmittance and, to a lesser extent, the absorptance of the systems, which differ significantly according to the analyzed shading device. The three types of curtains analyzed demonstrate an SHGC dependent on the fabrics openness factor: jacquard curtains (openness factor 0.05) present a SHGC of 0.7, whereas organza curtains (openness factor 0.45) have a SHGC of 0.82. The SHGC of the venetian blinds analyzed varies on average 36% according to the slat tilt (0°–45°). The solar control films examined modify their solar gain according to their spectral selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.