Residues beyond the first coordination shell are often observed to make considerable cumulative contributions in enzymes. Due to typically indirect perturbations of multiple physicochemical properties of the active site, however, their individual and specific roles in enzyme catalysis and disease-causing mutations remain difficult to predict and understand at the molecular level. Here we analyze the contributions of several second-shell residues in phosphate-irrepressible alkaline phosphatase of flavobacterium (PafA), a representative system as one of the most efficient enzymes. By adopting a multifaceted approach that integrates quantum-mechanical/molecular-mechanical free energy computations, molecular-mechanical molecular dynamics simulations, and density functional theory cluster model calculations, we probe the rate-limiting phosphoryl transfer step and structural properties of all relevant enzyme states. In combination with available experimental data, our computational results show that mutations of the studied second-shell residues impact catalytic efficiency mainly by perturbation of the apo state and therefore substrate binding, while they do not affect the ground state or alter the nature of phosphoryl transfer transition state significantly. Several second-shell mutations also modulate the active site hydration level, which in turn influences the energetics of phosphoryl transfer. These mechanistic insights also help inform strategies that may improve the efficiency of enzyme design and engineering by going beyond the current focus on the first coordination shell.
Read full abstract