Abstract

The star-to-star anticorrelation of sodium and oxygen is a defining feature of globular clusters, but, to date, the astrophysical site responsible for this unique chemical signature remains unknown. Sodium enrichment within these clusters depends sensitively on reaction rate of the sodium destroying reactions $^{23}\mathrm{Na}(p,\ensuremath{\gamma})$ and $^{23}\mathrm{Na}(p,\ensuremath{\alpha})$. In this paper, we report the results of a $^{23}\mathrm{Na}{(^{3}\mathrm{He},d)}^{24}\mathrm{Mg}$ transfer reaction carried out at Triangle Universities Nuclear Laboratory using a $21\phantom{\rule{0.16em}{0ex}}\mathrm{MeV}\phantom{\rule{0.16em}{0ex}}^{3}\mathrm{He}$ beam. Astrophysically relevant states in $^{24}\mathrm{Mg}$ between $11<{E}_{x}<12\phantom{\rule{0.16em}{0ex}}\mathrm{MeV}$ were studied using high-resolution magnetic spectroscopy, thereby allowing the extraction of excitation energies and spectroscopic factors. Bayesian methods are combined with the distorted wave Born approximation to assign statistically meaningful uncertainties to the extracted spectroscopic factors. For the first time, these uncertainties are propagated through to the estimation of proton partial widths. Our experimental data are used to calculate the reaction rate. The impact of the new rates are investigated using asymptotic giant branch star models. It is found that while the astrophysical conditions still dominate the total uncertainty, intramodel variations on sodium production from the $^{23}\mathrm{Na}(p,\ensuremath{\gamma})$ and $^{23}\mathrm{Na}(p,\ensuremath{\alpha})$ reaction channels are a lingering source of uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.