Abstract

This Perspective aims at providing a road map to computational heterogeneous photocatalysis highlighting the knowledge needed to boost the design of efficient photocatalysts. A plausible computational framework is suggested focusing on static and dynamic properties of the relevant excited states as well of the involved chemistry for the reactions of interest. This road map calls for explicitly exploring the nature of the charge carriers, the excited-state potential energy surface, and its time evolution. Excited-state descriptors are introduced to locate and characterize the electrons and holes generated upon excitation. Nonadiabatic molecular dynamics simulations are proposed as a convenient tool to describe the time evolution of the photogenerated species and their propagation through the crystalline structure of photoactive material, ultimately providing information about the charge carrier lifetime. Finally, it is claimed that a detailed understanding of the mechanisms of heterogeneously photocatalyzed reactions demands the analysis of the excited-state potential energy surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.