This research examines the mechanical and thermal characteristics of composites made from nettle fiber-reinforced wheat bran filler particulate epoxy framework. It highlights the influence of different filler materials on the performance of these composites. A thorough examination of mechanical properties was carried out, focusing on the flexibility, bending strength, impact resistance, and Shore D hardness. The malleable quality was completely changed by adding a filler ingredient, reaching a peak of 51.36 MPa. The flexural strength reached 47.38 MPa, showing excellent ability to withstand loads. The assessment of affect quality reached a maximum of 13 kJ/m2, indicating high energy absorption and durability. The Shore D hardness, which indicates the surface’s ability to resist indentation, ranged from 52 to 61, indicating differences in the stiffness of the composite material. The addition of bran filler to this composite provides an ideal thermal conductivity value of 0.98 W/mK. The morphological properties of the composites were analysed using Scanning Electron Microscopy (SEM), which provided detailed insights into their internal structure. The SEM images revealed a uniform distribution of nettle filaments and bran fillers inside the epoxy matrix, with well-formed samples exhibiting strong fiber–matrix adhesion and minimal voids.
Read full abstract